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We consider the effective motion along a cylinder of a particle that freely diffuses in the bulk and
intermittently binds to the cylinder. From an exact approach we derive the different regimes of the effective
motion along the cylinder characterized by physical rates for binding/unbinding and the bulk diffusivity. We
obtain a transient regime of superdiffusion and, interestingly, a saturation regime characteristic for the cylin-
drical geometry. This saturation in a finite system is not terminal but eventually turns over to normal diffusion
along the cylinder. The first passage behavior of particles to the cylinder surface is derived. Consequences for
actual systems are discussed.
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Bulk-mediated surface diffusion �BMSD� defines the ef-
fective surface motion of a particle on a reactive surface that
intermittently unbinds and diffuses in the adjacent bulk be-
fore rebinding �Fig. 1�. BMSD was revealed by NMR in
porous glasses �1� and has relevance to numerous techno-
logical applications �2�. The particular case of BMSD on a
cylindrical surface is of importance for the facilitated diffu-
sion in gene regulation �3,4�, the net motion of motor pro-
teins along cytoskeletal filaments �5�, the transient binding of
chemicals to nanotubes �6�, or the exchange behavior be-
tween cell surface and surrounding bulk of rod-shaped bac-
teria �bacilli� and their linear arrangements �7� to name but a
few examples.

BMSD was previously investigated for a planar surface in
terms of scaling arguments �2,8�, master-equation schemes
�9�, and simulations �10�. More recently the first passage
problem between particle unbinding and rebinding for a free
cylindrical surface was considered �11�. Here we establish an
exact treatment of BMSD for a reactive cylindrical surface
deriving explicit expressions for the surface occupation, the
effective mean squared displacement �MSD� along the sur-
face, and the returning time distribution from the bulk. Dif-
ferent regimes ranging from transient superdiffusion to ter-
minal normal diffusion emerge naturally from the physical
time scales entering our description. We derive previously
unknown regimes characteristic of the cylindrical geometry,
most remarkably the existence of extremely long jumps as
well as a saturation regime of the surface MSD that will be
crucial to fully appreciate effective surface motion mediated
by bulk diffusion and its experimental investigation.

We consider a cylinder with radius a centered along
the symmetry axis of an outer cylinder of radius b. As the
physically interesting behavior arises along the cylinder,
we assume rotational symmetry around the z axis
�Fig. 1�. The concentration of particles �density function
�DF�� in the bulk is denoted by C�r ,z , t� ��C�=cm−3� while
n�z , t� ��n�=cm−1� refers to the particle DF per length
on the inner cylinder surface. The particle numbers are
Nb�t�=2��a

brdr�−�
� C�r ,z , t�dz in the bulk and Ns�t�

=�−�
� n�z , t�dz on the cylinder surface. With surface and bulk

diffusivities Ds and Db the two densities evolve according to
the diffusion equations �a derivation from a discrete model
will be presented elsewhere �12��
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in the bulk using cylindrical coordinates. Note the coupling
term between surface and bulk DFs through the flux term in
Eq. �1�. This term is positive when the particle concentration
is higher above the cylinder surface and negative otherwise.
We equip the diffusion equations with the following bound-
ary conditions:
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a

FIG. 1. �Color online� A particle diffuses in the bulk �full lines�
and intermittently binds to a cylinder surface on which it may also
diffuse �broken lines�. This produces an effective surface motion.
We here consider the motion along the cylinder. Bottom right: fron-
tal of diffusion between inner and outer cylinders.
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lim
r→a

C�r,z,t� = �n�z,t�, and � �C

�r
�

r=b

= 0. �3�

Thus right above the cylinder surface the bulk concentration
is defined by the surface density where the coupling constant
�=1 / �2�akb�off� involves the binding rate kb and the mean
unbinding time �off. The second relation defines a reflecting
condition at r=b. The initial condition corresponds to a sharp
concentration at the surface:

lim
t→0

n�z,t� = N0��z� and lim
t→0

C�r,z,t� = 0. �4�

Averaging over r and z we see that Ns�t�+Nb�t�=N0.
Fourier-Laplace transforming the DFs according to

C�r,k,u� = 	
−�

�

dzeikz	
0

�

dte−utC�r,z,t� , �5�

and analogously for n�k ,u� �we use the explicit dependence
on the Fourier and Laplace variables to denote the trans-
forms�, the surface DF yields in the form

n�k,u� =
N0

u + k2Ds + �q�1/�
, �6�

where q=
k2+u /Db and ��2�a�Db=Db / �kb�off�. We thus
find in the denominator of the usual diffusion propagator a
correction proportional to � stemming from the bulk ex-
change. For the bulk DF we obtain

C�r,k,u� = �N0
K1�qb�I0�qr� + I1�qb�K0�qr�

��u + Dsk
2 + �q�1/��

, �7�

where the � factors are defined as follows:

�1 = K1�qa�I1�qb� − I1�qa�K1�qb� ,

� = I0�qa�K1�qb� + I1�qb�K0�qa� , �8�

in terms of the modified Bessel functions.
We note that the coupling strength � is a measure for the

efficiency of the bulk-surface exchange. At �=0 the number
of surface particles Ns�t� remains constant. We define the
coupling time scale

t� = Db/�2 = �kb�off�2/Db, �9�

which tends to infinity for vanishing coupling and to zero for
strong coupling ��→��. From the diffusion behavior we ex-
tract two additional time scales, namely,

ta = a2/Db and tb = b2/Db. �10�

For times shorter than ta the particle does not yet sense the
curvature of the cylinder surface while for times longer than
tb it feels the confinement by the outer cylinder. In what
follows we are mainly interested in the regime of strong
coupling t�	 ta	 tb but will also report an almost ballistic
behavior under weaker coupling. The remaining cases will
be discussed elsewhere �12�.

The number of adsorbed particles follows from n�k ,u� by
taking k→0. For short times t	 t� we find that Ns�t��N0
remains constant as it should by definition of the coupling

time. At longer times t�	 t	 ta the behavior changes to
Ns�t��N0


t� / ��t�
 t−1/2. For even longer times ta	 t	 tb

we have a faster decay Ns�t�� 1
2N0


t�ta / t inversely propor-
tional to t. Finally at very long times t
 tb the dynamics
equilibrates with respect to the radial diffusion and
Ns�t��2N0


t�ta / tb.
Axial diffusion. The MSD along the cylinder surface can

be obtained from the characteristic function through

�z2�u�� = − N0
−1� �2n�k,u�

�k2 �
k=0

, �11�

where we divide by N0 to obtain an effective one-particle
displacement. This quantity is not corrected for particles
leaving the surface in contrast to the normalized displace-
ment �z2�u��n=N0�z2�u�� /Ns�t�. For the MSD along the cyl-
inder we find at short times �t	 t��,

�z2�t�� � 2Dst�1 +
2

3
�

Db

Ds
� t

t�
�1/2� � �z2�t��n. �12�

Thus, in this regime the diffusion to leading order is confined
to the surface; exchange with the bulk leads to a higher order
superdiffusive correction, when Ds	Db �see below�. Con-
versely, for longer times t�	 t	 ta, Ns�t� decays perceptibly
and

�z2�t�� � 2Dst� +
2


�
Db


tt�, �13a�

�z2�t��n � 2
�Ds

tt� + 2Dbt . �13b�

At even longer times ta	 t	 tb we see the influence of the
cylindrical geometry in the logarithmic dependencies

�z2�t�� �
Dstat�

t
log� 4t

Cta
� + Db


tat�, �14a�

�z2�t��n � 2Ds

tat�log� 4t

Cta
� + 2Dbt , �14b�

with Euler’s constant log C=�=0.5772. �z2�t�� exhibits a
saturation unique to the cylinder case due to the fast decay of
surface particles, Ns�t�
1 / t, see above. Finally, at very long
times t
 tb due to radial equilibration a linear diffusive be-
havior yields

�z2�t�� �
8tat�

tb
2 Dst + 4Db


tat�

tb
t , �15a�

�z2�t��n � 4Ds


tat�

tb
t + 2Dbt , �15b�

i.e., the combination of diffusion in the bulk and along the
cylinder gives rise to an effective diffusivity involving all
time scales.

The behavior of the MSD �z2�t�� for Ds=0 is shown in
Fig. 2. Note that the time scales �in dimensionless units�
t�=10−6, ta=1, and tb=106 were chosen to be well separated
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to visualize the four scaling regimes. The other parameters
were a=5, Db=a2 / ta=25, �=a /
tat�=5�103, and
b=a
tb / ta=5�103.

Propagator. Our formalism also produces the exact distri-
butions C�r , t� and n�z , t�. For times longer than tb we al-
ready found that the diffusion behavior is normal albeit with
rescaled diffusivity and the propagator along the cylinder
turns into a Gaussian. We recover a Gaussian for n�z , t� in
absence of bulk coupling, �=0. For times shorter than tb and
�
0 we observe non-Gaussian behavior. In most relevant
cases Ds	Db and we therefore consider the case Ds=0 in
what follows.

At shorter times t	 ta� tb we have uta
1 and utb
1,
and qa=a
k2+u /Db�a
u /Db=
uta
1 such that qa
1
and qb
1. Therefore �1�� and the propagator reduces to

n�k,u� =
N0

u + �
k2 + u/Db

. �16�

In the central part of the DF where k2
u /Db �i.e., z�
Dbt�,
we obtain the normalized Cauchy distribution

n�k,u� =
N0

u + ��k�
⇔ n�z,t� =

N0�t

��z2 + �2t2�
. �17�

This interesting result is analogous to the findings from Ref.
�2� for a flat surface found from scaling arguments �13�. Here
we derive the Cauchy law from an exact approach allowing
us to study the transition to other regimes explicitly. To do so
we introduce the range of validity �C�t�=
Dbt of the Cauchy
region. While at distances z
�C�t� we observe a Gaussian
cutoff, for z��C�t� the Cauchy approximation is valid. From
this Cauchy part we obtain the superdiffusive contribution,

	
−�C�t�

�C�t� z2�tdz

��z2 + �2t2�
� 2�
Dbt3/2, �18�

to the MSD, consistent with exact result �12� �with Ds=0�.
Calculation of the MSD from full Eq. �6� however requires
the k→0 limit and thus the extreme wings of the distribution
are explored. As the system evolves in time the central

Cauchy part spreads. As in the regime t�� t� ta we already
have Dbt��2t2, the asymptotic behavior 
z−2 can no longer
be observed.

At intermediate times t�	 t	 ta we find
n�k ,u�=N0


t� / �u+Dbk2� corresponding to the Gaussian

n�z,t� = Ns�t�
 1

4�Dbt
exp�−

z2

4Dbt
� , �19�

with Ns�t�=�−�
� n�z , t�dz=N0


t� / ��t�. For longer times
ta	 t	 tb the propagator acquires the shape n�k ,u�
=−aN0 log�C2�a2k2+uta� /4� / �2�� which yields Eq. �19�
with Ns�t�=N0


tat� / �2t�. Finally, for very long times t
 tb
we again find Eq. �19� with the saturation value
Ns�t�=2N0


tat� / tb. Indeed one can show by the shift theorem
of the Laplace transformation that any function of the argu-
ment u+Dbk2 will lead to Gaussian shape �19�, with appro-
priate normalization.

First passage. The DF of times ��t� a particle spends in
the bulk after detachment from the cylinder can be calculated
explicitly �details of the calculation will be presented else-
where �12��. To this end we initially place the test particle at
radius a�r0�b and calculate when it is first adsorbed at
r=a. With t0=r0

2 /Db this first passage problem defines ��t�
by

��t� = 2�a	
−�

�

Db� �C�r,z,t�
�r

�
r=a

dz , �20�

in terms of the radial flux into r=a. The Laplace transform of
��t� then becomes

��u� =
I1�
utb�K0�
ut0� + K1�
utb�I0�
ut0�
I1�
utb�K0�
uta� + K1�
utb�I0�
uta�

. �21�

For tb→�, ��u��K0�
ut0� /K0�
uta� while for r0=a we re-
cover the sharp form ��t�=��t� as it should.

At shorter times t	 ta� t0 we obtain the expansion

��t� =
 a

r0

r0 − a

4�Dbt3

e−��r0 − a�2/4Dbt��1 +
Dbt

4ar0
+ . . .� .

�22�

This expression, to leading order, corresponds to the first
passage DF of a one-dimensional �1D� random walk, re-
weighted by the ratio 
a /r0. Keeping the distance r0-a fixed
but letting both r0 and a tend to infinity, we recover the result
for a flat surface for which the 1D first passage remains valid
at all times.

At longer times ta	 t	 tb the logarithmic form
��u��1–2 log�r0 /a� / log�1 / �uta�� yields. From Tauberian
theorems �14� we infer the first passage behavior into a cyl-
inder of radius a,

��t� �
2 log�r0/a�
t log2�t/ta�

, �23�

see also Refs. �11,15�. We note that a distribution of return
times to the cylinder of this form implies by a diffusive cou-
pling z2
 t that a single bulk excursion leads to the DF
��z�
1 / �z log2 z� of effective dislocations z along the cyl-
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FIG. 2. MSD obtained from numerical Laplace inversion of Eqs.
�6�, �8�, and �11�, showing the various effective diffusion regimes
along the cylinder. Note the transient plateau.
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inder. Finally in the long-time limit t
 tb the outer cylinder
comes into play and ��t� attains an exponential cutoff, lead-
ing to a mean first passage time

�t� = b2 log�r0/a�/�2Db� . �24�

Extremely long jumps. An interesting behavior occurs
when we relax the strong-coupling condition t�	 ta. We said
that when t
 ta the diffusing particles feel a change in ge-
ometry from planar to cylindrical, and the time scale
tc�
tat�=a /� occurs in our expressions. If we have
ta	 t	 tc	 tb then Ns�t��N0 and

�z2�t�� = 2Dst +
2Dbt2

tc log2�4t/�C2ta��
, �25�

which is a ballistic behavior with logarithmic correction: for
Ds	Db the superdiffusion is even stronger than for t	 ta.
Similarly, the propagator reduces to

n�k,u� = N0/�u + �qK1�aq�/K0�aq�� . �26�

In the range a	z	
Dbt �i.e., 
uta	ak	1�,
�qK1�aq� /K0�aq���� /a�log�2 / �Cak��, which is an ex-
tremely weak k dependence: this precutoff tail of n�k ,u� is
heavier than any normalizable power law due to the heavy
tailed distribution of bulk mediated dislocations.

Discussion. We established an exact approach to BMSD
along a reactive cylindrical surface revealing four distinct
diffusion regimes. In particular our formalism provides a
stringent derivation of the transient superdiffusion discussed
earlier and explicitly quantifies the transition to other re-
gimes. Notably we revealed a saturation regime for the MSD
along the cylinder that becomes relevant at times above
which the diffusing particle feels the curvature of the cylin-
der surface �ta�. This behavior, caused by the cylindrical ge-
ometry, stems from an interesting balance between a net flux

of particles into the bulk and the fact that particles with a
longer return time also lead to an increased effective surface
relocation. In absence of an outer cylinder the saturation is
terminal while in its presence the MSD along the cylinder
returns to a linear growth in time. This observation will be
important in future models of BMSD around cylinders and
particularly for the interpretation of experimental data ob-
tained for BMSD systems. We note that in the proper limit
a→� the previous results for a planar surface are recovered.
Relaxing the strong-coupling condition we demonstrated the
existence of an almost ballistic BMSD behavior, a case that
might be relevant for transport along thin cylinders such as
DNA.

In Ref. �11� it was shown that the scaling behavior in the
regimes below and above ta can be probed experimentally by
NMR methods measuring the BMSD of water molecules
along imogolite nanorods over three orders of magnitude in
frequency space. For larger molecules such as a protein of
approximate diameter of 5 nm, we observe a diffusivity of
10−6 cm2 /s such that for instance the saturation plateau
around a bacillus cell �radius 1 /2 �m� sets in at around
ta=2.5 ms which might give rise to interesting consequences
for the material exchange around such cells. In general, the
relevance of the individual regimes will crucially depend on
the scales of the surface radius and the diffusing particle �and
therefore its diffusivity�. It was discussed previously that
even the superdiffusive short-term behavior may become rel-
evant �2,8,10�. In general, in a given system the separation
between the various scaling regimes may not be sharp.
Moreover typically a single experimental technique will not
be able to probe all regimes. It is therefore vital to have
available a solution for the entire BMSD problem.
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